3,442 research outputs found

    Temperature dependence of instantons in QCD

    Get PDF
    We investigate the temperature dependence of the instanton contents of gluon fields, using unquenched lattice QCD and the cooling method. The instanton size parameter deduced from the correlation function decreases from 0.44fm below the phase-transition temperature TcT_c (150\approx 150MeV) to 0.33fm at 1.3 TcT_c. The instanton charge distribution is Poissonian above TcT_c, but it deviates from the convoluted Poisson at low temperature. The topological susceptibility decreases rapidly below TcT_c, showing the apparent restoration of the U(1)AU(1)_A symmetry already at TTcT \approx T_c.Comment: 8 pages TEX, 3 Postscript figures available at http://www.krl.caltech.edu/preprints/MAP.htm

    Instantons and <A2><A^2> Condensate

    Get PDF
    We argue that the condensatefoundintheLandaugaugeonlattices,whenanOperatorProductExpansionofGreenfunctionsisperformed,mightbeexplainedbyinstantons.Weusecoolingtoestimatetheinstantoncontributionandextrapolatebacktheresulttothethermalisedconfiguration.Theresulting condensate found in the Landau gauge on lattices, when an Operator Product Expansion of Green functions is performed, might be explained by instantons. We use cooling to estimate the instanton contribution and extrapolate back the result to the thermalised configuration. The resulting is similar to .Comment: 6 pages, 1 fig., 1 tab., RevTeX to be use

    Instantons and Chiral Symmetry on the Lattice

    Get PDF
    I address the question of how much of QCD in the chiral limit is reproduced by instantons. After reconstructing the instanton content of smoothed Monte Carlo lattice configurations, I compare hadron spectroscopy on this instanton ensemble to the spectroscopy on the original ``physical'' smoothed configurations using a chirally optimised clover fermion action. By studying the zero mode zone in simple instances I find that the optimised action gives a satisfactory description of it. Through the Banks-Casher formula, instantons by themselves are shown to break chiral symmetry but hadron correlators on the instanton backgrounds are strongly influenced by free quark propagation. This results in unnaturally light hadrons and a small splitting between the vector and the pseudoscalar meson channels. Superimposing a perturbative ensemble of zero momentum gauge field fluctuations (torons) on the instantons is found to be enough to eliminate the free quarks and restore the physical hadron correlators. I argue that the torons that are present only in finite volumes, are probably needed to compensate the unnaturally large finite size effects due to the lack of confinement in the instanton ensemble.Comment: 32 pages, LaTeX with 14 eps figure

    Validation of the disease-specific components of the Kidney Disease Quality of Life-36 (KDQOL-36) in Chinese patients undergoing maintenance dialysis

    Get PDF
    AIM: The aim of this study was to evaluate the validity, reliability and sensitivity of the disease-specific items of the Kidney Disease Quality of Life-36 (KDQOL-36) in Chinese patients undergoing maintenance dialysis. METHODS: The content validity was assessed by content validity index (CVI) in ten subjects. 356 subjects were recruited for pilot psychometric testing. The internal construct validity was assessed by corrected item-subscale total correlation. Confirmatory factor analysis (CFA) was used to confirm the factor structure. The convergent validity was assessed by Pearson's correlation test between the disease specific subscale scores and SF-12 version 2 Health Survey (SF-12 v2) scores. The reliability was assessed by the internal consistency (Cronbach's Alpha coefficient) and 2-week test-retest reliability (intraclass correlation coefficient (ICC)). The sensitivity was determined by performing known group comparisons by independent t-test. RESULTS: The CVI on clarity and relevance was â ¥ 0.9 for all items. Corrected item- total correlation scores were â ¥0.4 for all, except an item related to problems with access site. CFA confirmed the 3-factor structure of the disease-specific component of the KDQOL-36. The correlation coefficients between the disease-specific domain scores and the SF-12 v2 physical and mental component summary scores ranged from 0.328 to 0.492. The reliability was good (Cronbach's alpha coefficients ranged from 0.810 to 0.931, ICC ranged from 0.792 to 0.924). Only the effect subscale was sensitive in detecting differences in HRQOL between haemodialysis and peritoneal dialysis patients, with effect size = 0.68. CONCLUSION: The disease-specific items of the KDQOL-36 are a valid, reliable and sensitive measure to assess the health-related quality of life of Chinese patients on maintenance dialysis.published_or_final_versio

    Micro and nanostructured surfaces for enhanced phase change heat transfer

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 61-65).Two-phase microchannel heat sinks are of significant interest for thermal management applications, where the latent heat of vaporization offers an efficient method to dissipate large heat fluxes in a compact device. However, a significant challenge for the implementation of microchannel heat sinks is associated with flow instabilities due to insufficient bubble removal, leading to liquid dry-out which severely limits the heat removal efficiency. To address this challenge, we propose to incorporate micro/nanostructures to stabilize and enhance two-phase microchannel flows. Towards this goal, this thesis focuses on fundamental understanding of micro/nanostructures to manipulate liquid and vapor bubble dynamics, and to improve overall microchannel heat transfer performance. We first investigated the role of micro/nanostructure geometry on liquid transport behavior. We designed and fabricated asymmetric nanostructured surfaces where nanopillars are deflected with angles ranging from 7 -52'. Uni-directional liquid spreading was demonstrated where the liquid propagates in a single preferred direction and pins in all others. Through experiments and modeling, we determined that the spreading characteristic is dependent on the degree of nanostructure asymmetry, height-to-spacing ratio of the nanostructures, and intrinsic contact angle. The theory, based on an energy argument, provides excellent agreement with experimental data. This work shows a promising method to manipulate liquid spreading with structured surfaces, which potentially can also be used to manipulate vapor bubble dynamics. We subsequently investigated the effect of micro/nanostructured surface design on vapor bubble dynamics and pool boiling heat transfer. We fabricated micro-, nano-, and hierarchically-structured surfaces with a wide range of well-defined surface roughness factors and measured the heat transfer characteristics. The maximum critical heat flux (CHF) was ~250 W/cm2 with a roughness factor of~-13.3. We also developed a force-balance based model, which shows excellent agreement with the experiments. The results demonstrate the significant effect of surface roughness at capillary length scales on enhancing CHF. This work is an important step towards demonstrating the promising role of surface design for enhanced two-phase heat transfer. Finally, we investigated the heat transfer performance of microstructured surfaces incorporated in microchannel devices with integrated heaters and temperature sensors. We fabricated silicon micropillars with heights of 25 [mu]m, diameters of 5-10 [mu]m and spacings of 5- 10 [mu]m in microchannels of 500 [mu]m x 500 [mu]m. We characterized the performance of the microchannels with a custom closed loop test setup. This thesis provides improved fundamental understanding of the role of micro/nanostructures on liquid spreading and bubble dynamics as well as the practical implementation of such structures in microchannels for enhanced heat transfer. This work serves as an important step towards realizing high flux two-phase microchannel heat sinks for various thermal management applications.by Kuang-Han Chu.Ph.D

    Hadronic Spectral Functions in Lattice QCD

    Get PDF
    QCD spectral functions of hadrons in the pseudo-scalar and vector channels are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The maximum entropy method works well for this purpose, and the resonance and continuum structures in the spectra are obtained in addition to the ground state peaks.Comment: 4 pages, 3 eps-figures, revtex (minor modifications in the text and an added reference). To appear in Physical Review D Rapid Communication

    Nanoscopic Tunneling Contacts on Mesoscopic Multiprobe Conductors

    Full text link
    We derive Bardeen-like expressions for the transmission probabilities between two multi-probe mesoscopic conductors coupled by a weak tunneling contact. We emphasize especially the dual role of a weak coupling contact as a current source and sink and analyze the magnetic field symmetry. In the limit of a point-like tunneling contact the transmission probability becomes a product of local, partial density of states of the two mesoscopic conductors. We present expressions for the partial density of states in terms of functional derivatives of the scattering matrix with respect to the local potential and in terms of wave functions. We discuss voltage measurements and resistance measurements in the transport state of conductors. We illustrate the theory for the simple case of a scatterer in an otherwise perfect wire. In particular, we investigate the development of the Hall-resistance as measured with weak coupling probes.Comment: 10 pages, 5 figures, revte

    Relations among neutrino observables in the light of a large theta_13 angle

    Full text link
    The recent T2K and MINOS indications for a "large" theta_13 neutrino mixing angle can be accommodated in principle by an infinite number of Yukawa flavour structures in the seesaw model. Without considering any explicit flavour symmetry, there is an instructive exercise one can do: to determine the simplest flavour structures which can account for the data with a minimum number of parameters, simply assuming these parameters to be uncorrelated. This approach points towards a limited number of simple structures which show the minimum complexity a neutrino mass model must generally involve to account for the data. These basic structures essentially lead to only 4 relations between the neutrino observables. We emphasize that 2 of these relations, |sin theta_13|=(tan theta_23/cos delta)*(1-tan theta_12)/(1+tan theta_12) and |sin theta_13| = sin theta_12 R^1/4, with R= Delta m^2_21/Delta m^2_32, have several distinctive properties. First, they hold not only with a minimum number of parameters, but also for complete classes of more general models. Second, any value of theta_13 within the T2K and MINOS ranges can be obtained from these relations by taking into account small perturbations. Third, they turn out to be the pivot relations of models with approximate conservation of lepton number, which allow the seesaw interactions to induce observable flavour violating processes, such as mu -> e gamma and tau -> mu gamma. Finally, in specific cases of this kind, these structures have the rather unique property to allow a full reconstruction of the seesaw Lagrangian from low energy data.Comment: 13 pages, 3 figure

    Negative group delay for Dirac particles traveling through a potential well

    Full text link
    The properties of group delay for Dirac particles traveling through a potential well are investigated. A necessary condition is put forward for the group delay to be negative. It is shown that this negative group delay is closely related to its anomalous dependence on the width of the potential well. In order to demonstrate the validity of stationary-phase approach, numerical simulations are made for Gaussian-shaped temporal wave packets. A restriction to the potential-well's width is obtained that is necessary for the wave packet to remain distortionless in the travelling. Numerical comparison shows that the relativistic group delay is larger than its corresponding non-relativistic one.Comment: 10 pages, 5 figure
    corecore